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Abstract. In this paper we perform the semiclassical analysis of a pair of resonances in the case
of a quasi-symmetrical unstable double well. We consider two kinds of asymmetric perturbations:
one supported in the infinite external well, the other one of the Stark kind. We prove that the
first perturbation is able to localize each state inside one of the internal wells so that we have
linear Stark effect and vanishing of the splitting at the crossing point of the two resonances.
This phenomenon is critical in the ratio between the internal and external barrier lengths, and
the critical value of the ratio is close to two. Possible applications to the molecular structure
and to the vanishing of the inversion frequency are briefly discussed.

1. Introduction

Among the beautiful results in semiclassical quantum mechanics we have the double well
localization for small perturbations restricted to the barriers [3,9, 12]. Such localization of
a pair of bound states is associated to a small growing of the splitting.

Let us consider the Stark effect for this model with very weak fields (of the order of
the splitting). If we plot the graphic of the first two levels as functions of the field strength,
we can see that the localization region (for all the parameters) is the one where we have
a locally linear (not quadratic) behaviour with respect to the field. But, if we take a field
strength sufficiently large to give the crossing of the levels, we lose the localization and
actually we have an avoided crossing and a quadratic Stark effect at the crossing point.

Now, considering the molecular structure effect, as for instance in the ammonia case,
we observe the vanishing of the splitting (i.e. the inversion frequency) together with the
occurrence of localization. Indeed, the experimental data show that the inversion frequency
decreases regularly to zero as the environment action (i.e. the gas pressure) increases.
Moreover the Stark effect is expected to be linear in this case [15]. Of course, all the
explanations of the molecular structure are related to the existence of perturbations due
to the environment. Obviously the localized states are not considered to be stationary
eigenstates of the symmetrical molecular operator.

The racemization effect shows the instability of the molecules, at least at high
temperature [6].
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A complete model of the molecular structure should take into account both the formation
of chains of molecules and the occurrence of molecular collisions.

One particular model concerns the non-linear Stark effect due to the reaction field
generated by the asymmetric molecules [1,2,4]. In such a model we have localization,
but the splitting vanishes in a discontinuous way because of the selection rules. Another
simple model was proposed a long time ago by Margenau [11]. It consists in a system of
two double wells representing the shape potential of two close molecules. In this case we
have two different inversion frequencies, and actually the smaller one is more relevant in
the radiation spectrum. This model gives reasonable results for intermediate pressures, but
it is not able to give the vanishing of the inversion frequency at high pressure.

We propose here, as a simplified molecular model, a time independent one consisting
in an unstable symmetrical double well, @double volcanpwith small perturbations. The
instability comes from the shape of the potential, with an infinite well connected by tunneling
to the double well. The shape of the potential suggests the picturedotilble well in an
island [8] or a double volcano on the oceanThis model appears as a prototype and a
research laboratory of splitting instability in the quasi-symmetrical case. Actually, with
such a model, extended to the many dimensional case and using modern techniques of
analysis, we obtain all the effects we have in molecules: localization stable with respect
to the Stark effect, linear Stark effect and vanishing of the splitting at the crossing point.
In order to show what happens in a simpler way, we start with a toy model which can
be treated with elementary methods. In this model it is possible to have vanishing of the
splitting at a very small electric field (with respect to the splitting), and this happens when
the depth of the ocean is of the order of the semiclassical parameter.

In all our models we have a parameter usually considered fixed: the instability one
related to the ratio between the internal barrier length and the external one. We show that
the results of stable localization, linear Stark crossing and vanishing of the splitting are all
dependent on the instability parameter. We fix a critical value of the instability parameter,
depending on the beating effect of the double well, above which (that is in the hypercritical
case) we obtain stable localization by means of a very small external perturbation. For this
value of the instability parameter the inter-well barrier length is twice the external one, and
equivalently the mean life of the system is equal to the beating period of the symmetrical
problem.

Since the molecular structure represents the persistence of classical notions in
microscopical systems (actually non-isolated!), then it is an example of strong instability in
the semiclassical limit. In particular we observe instability of delocalization and splitting.
The practical result is the small relevance of quantum stationary states and the long
persistence of metastable localized states [15]. Since we expect the localized states to
be metastable [15], we introduce an instability in the system as given by the environment.
In such a way we are able to have both localization and vanishing of the splitting for small
asymmetric perturbations if the instability is hypercritical. This could explain the transition
from a quantum to a classical behaviour at a finite semiclassical parameter as it happens in
nature. Actually, in order to compare with physics, we should prove the existence of this
critical effect in time-dependent unstable models.

Now, let us describe better the models and the results.

As a toy model in one dimension we consider a potential with two steps and two delta
functions. We take the ocean depth small and a flat perturbation extending throughout one
half of the ocean. In this case we have no need of the Stark effect for the vanishing of the
splitting at the leading order.

Then, the model of molecular potential we consider consists of a symmetrical unstable
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double well (i.e. double volcano) potential in any dimension, with enough regularity in
order to use the Helffer-8gtrand method, or also, when it is possible, the external
complex scaling. In this model the molecular metastable states are delocalized in the
double well region (i.e. the island). Such a delocalization can disappear when we introduce
an exponentially small (with respect to the semiclassical paramgtgerturbation which
causes the breakdown of the symmetry. For completeness we consider two different kinds
of perturbations. The first one, called internal perturbation (section 5.2), is given by means
of a potential which is a non-negativ&® function with its support inside the island, but

far from each well. With such a perturbation we are able to extend the localization results
of Simon [12] to the unstable case, but we do not obtain the splitting instability results
we announced above. The second one, called external perturbation (section 5.3), is able
to give all the desired results. It consists in a potential defined by a non-smooth function
with compact support contained in the ocean. More precisely, we assume that the external
perturbation is given byW = wly, where w is a positiveC* function and1y}, is the
characteristic function of a compact 38t with smooth boundary.

Let us quote our previous paper [5] where we discuss a model having a large asymmetry,
but otherwise being similar to the present one. In that paper we discuss the transition from
anti-crossing to crossing of Stark effect resonances for growing instability.

The paper is organized as follows: in section 2 we discuss the toy model; in section 3 we
give the general notations and we discuss the class of models we consider; in section 4 we
briefly recall the definition of resonances given by Helffer aniss8and [8] and we consider
the single volcano resonances; in section 5 we consider the double volcano resonances in
the absence of asymmetric perturbation (section 5.1), with internal asymmetric perturbation
(section 5.2), with external asymmetric perturbation (section 5.3) and with both external
perturbation and the Stark effect (section 5.4); in the appendix we consider the perturbation
norm.

2. The toy model

As a continuation of the introduction let us discuss a simple model which can be solved
explicitly by elementary methods. Since the discussion is very similar to the one of the real
model, with similar results, it is useful for a better understanding of the problem. Actually,
we now consider a case where the imaginary part of the resonances is more sensitive to the
perturbation than its real part. We treat exactly the case in which we have the vanishing
of the splitting at very small field strength. In particular we make the depth of the ocean
vanish in the semiclassical limit.

Let us consider the Hamiltonian:

d2
H=——_ + Vix). (2.1)

dx2
The symmetrical potential with the Stark perturbation is given by:
Vo(x) = =y + (@ + Y)-2-c 21 (x) —b_6(x +1+€) —bid(x —1—¢) (2.2)

whereb: = B(1F ¢), @ = B%/4, ¢, 8,y € Rt, ¢ € R and§(x) is the Dirac’ss. The
perturbed potential is:

Va(x) = Vo(x) + dlppic o0y (X) (2.3

wherey > d. If we consider the Sommerfeld solutions-ato, respectively, and we match
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their logarithmic derivatives at the origin, we get an equation for the two resonances:
kg-2+e)—b f (De(l+e)  xkgr+e) —byfr(De(dl+e)

Kf-2+e)—b_fDs(L+e)  «kfsR+e)—byfr(Ds(L+e) (4)
where
fe(x) = c(x) —ilks/Kk)s(x) g+(x) = s(x) — i(ks/K)c(x) (2.5)
c(x) = coshkx) s(x) = sinh(kx) (2.6)
and

k=+~a—E k-=\E+vy ki =VE+vy—d. (2.7)

We consider the semiclassical regime fgBlsmall, and we take exponentially small
with respect to the semiclassical parametgs.1Thus, we get the approximate equation:

—y. —¢— - - 1
N=—y-—¢—un n—yi+é¢ * o as= — 0 (2.8)
n—y-—¢+u n—yrt+éd+u p
where:
1+iky/x kg 2 )

— ~ 1 e — - — eZK = GK, 29
=T i e +'/3 n (/3 ) w=e (2.9)
The solutions) of the approximate equation are:

ne = (ry +v)/2% Vs —v)/2— 912+ 42 (2.10)

So, we see thakn. (and the corresponding positions of the resonaites- —2ae #9in.)
as functions ofp cross each other gt = 0 with nearly linear behaviour if, —y_ is nearly
imaginary as shown above, andl(, — y_)]? > 4u?, i.e. if

2
(ky —k_)2/B2 ~ <ﬁ —Jy = d) /B2 > Aexp(—2pe). (2.11)

The last inequality is satisfied & vanishes with the semiclassical parameter, with the
condition:

€ > In(B)/B. (2.12)

Thus, even in this simple model we have the critical instability when the external barrier is
nearly one half of the internal one (i.e.small).

3. General notations

We consider the semiclassical Satiinger operator formally defined at?(R”):

P = —Rh’A+V(x) (3.1)
where V(x) is a symmetrical unstable double-well potential (simgiyuble volcanoor
double wellin the following). More preciselyy (x) is a C*(R", R) function such that

limsupV(x) <0 and xeR":V(x) <0} ={x1,x}UU 3.2)

|x|—o00
and there exists a symmetsywith respect to a hyperplane such that
[v,S]=0. (3.3)

The unbounded séf is calledocean(or alsoinfinite external well and {x;} and {x,} are
called wells the open seO:= R"\U is calledisland By means of a suitable choice of
coordinates we simply assume that

SHEL X2, xm) = f(—xt X% ™ (3.4)
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hencex, = Sx; provided thatSx; # x;1. In the following we assume that the two minima
are non-degenerate, that is
V(xg) =0 VV(xy) =0 [Hesd](x,) > 0 =12 (3.5)
Now, let
P, =P +vW (3.6)

be the perturbed double well operator wheris a real parameter and wheléis a bounded
perturbation which causes the breakdown of the symmetry, i.e.

SW # WS. (3.7)

We consider two different classes of perturbatid#is internal perturbations, where
W is aCg°(R", R) non-negative function with compact suppatt disjoint from the wells
and such thatvnO+ ¢, and external perturbations, wherdV = wiyy, w is a positive
C*(R", R) function andi}}, is the characteristic function on a compact Bétcontained in
U and with smooth boundary, i.&yix) =1 if x € W andlly(x) = 0 if x ¢ W.

Let

So 1= p(x1, x2) (3.8)
be the Agmon distance between the two wéllg} and {x,} and let
Se = p(xe, U) :i= il’g}fUp(xg, x) S =85=25 3.9
XE

be the Agmon distance between each well and the oteabet s, be the Agmon distance
between the wellx,} and the support of the perturbation:

s¢ = pxe, W) W = suppw (3.10)
and let

s := min{sq, so}. (3.11)
The Agmon (pseudo-)distance @&t is defined as

p(x,y) = pvx,y) = if;fLy x,y €R" (3.12)

where the infimum is taken on the possible piece-wi8epathsy connecting the two
pointsx andy and whereL,, is the length of the patly with respect to the Agmon metric
ds? := max[0, V (x)]dx?.

We consider the following two cases:

S sub-critical case Sy < 2S; thus the minimal geodesics connecting the two wells are
contained in the open sé;

H hypercritical case there are not minimal geodesics of length less than or equal to
25 connecting the two wells and contained@n(see figure 1), thusy = 25 for n > 1 and
So > 28 forn = 1.

We don't dwell on the critical case, correspondingSto= 2S5 and where there exists
at least a minimal geodesic connecting the two wells and contain€q aven if it can be
treated similarly to the hypercritical case.

In the hypercritical casél we assume:

B(x1, )N B(x2, $) N3O =0 (3.13)

where

B(A,8) ={xeR":p(x, A) <6} (3.14)
that is the endpoint of each minimal geodesic, connecting the {wgllwith the ocean,
does not coincide with the one of a minimal geodesic connedtingith the other well
{x2}.
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Figure 1. Let y,, ¢ = 1,2, be a minimal geodesic connecting tivell {x,} with the ocean
U. The Agmon length ofy, is S. In the hypercritical casél we have that the path given by
y1+ I + y»2, wherel is any path contained in theceanU and linking the endpoints of; and
2, has Agmon length £ Any local geodesigq connecting the wells and contained@nhas
length strictly greater tha§p = 2S.

Remark 1 Let us stress that assumption (3.13) is very general and actually implies

B(x1, )N B(x2, S) =0 (3.15)

in the caseH. Moreover, let us note that the oce&his a connected set since (3.2) for
n > 1; for this reason (using the triangular inequality) we hdye= 2S in the hypercritical
case and fon > 1. The results we give in the next sections for this class of models still
hold for one-dimensional models even if the ocean of a one-dimensional double volcano
model is not connected.

In the following let us drop the dependence orand # where this does not cause
misunderstanding and Iét denote a generic positive constant.

4. Single volcano resonances

We define resonances in the Helfferé§yand framework where the potential considered
admits real-analytic extension outside of a compact set and satisfies non-trapping conditions.
By assuming that the potentitl satisfies hypotheses 1-3 given in the appendix we introduce

a family of Hilbert spacegH’}, (see the appendix) for any €@ r < t*, wherer* > 0 is

fixed and independent @f constant. The multiplicative operator defined as

W H, — Hg (4.1)
is norm bounded with bound (see lemma A.1 in the appendix)

IW |2y 341y < C26°277 (4.2)
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for some constant§; > 0 andC;, > 0, whereC, = 0 if W c O. Here we choose

* S _ 1 —Cr* /R Ao
t <c1_’_C2 c= 20 and lv| < € C:=2C+1. (4.3)
The choice of the numerical value ofwill be justified in remark 5.
From (4.2) it follows that the resonance opera®jr formally defined byp, from ) to
Hp, is well defined and the resonancesRyfare defined as the eigenvaluesRjffor some
t > 0 (see [8] and see also theorem 1 and definition 2 in [5]). The strategy to compute the
first level resonances of the double well operafyris the same we used in [5]: we start
by studying the first level resonance of the two single well operators obtained by filling one
well, and then we consider the interaction between the two wells.
Let V1 be aCg°(R", [0, 1]) function with support contained iB(x2, n) and such that
V(x) + Vi(x) > 0 for anyx € B(xz, ), where O< n < s/3 is fixed and small enough/,
is defined as

= SVy. (4.4)

By construction, the single well operatdy := P + V;, £ = 1, 2, admits exactly one single
well resonance; () := z¢(%, n) close to the ground staig’ of the harmonic oscillator
associated, where, = Z] lf and where 2; > 0 are the eigenvalues of the Hessian
matrix of the potentialV at the minimum. That ig,(h) is an eigenvalue of

P/ Hy — Hp (4.5)

for some 0< r < ¢* small enough, with associated eigenfunctigrnix; #) := ¢, (x; i, n)
independent of.

Remark 2 Since (3.3) and (4.4) it follows that

SP = PS8 (4.6)
and so

Z(h) := za(h) = z2(h) and 91 =S¢z (4.7)

Let us now recall the following properties (see [8] and theorem 7 in [5]).
The imaginary part of the resonanggh) is exponentially small, that is

I3z, (R)| = O /M) asi — 0 (4.8)

whereg = O(f), for two given functionsf and g, means that there exists= ¢(;) > 0
and a positive constart, independent ofi, such thatjg| < C,,ee/5|f| ash goes to zero,
with e(n) — 0 asn — 0.
If the potential is analytic on a neighbourhood of the minimal geodesics connecting the
well {x,} with the ocearn/ we have that

Sze(h) = —po (b, e 27" ChY? < ¢y < CRM? (4.9)

for some positiveC.
The eigenfunctiony, (x; i) associated ta, (%) can be normalized as

(pe, o) =1 (4.10)
where(-, -) denotes the Euclidean bilinear form

(u,v) = {(u,v)2 = /u(x)v(x)dx. (4.11)
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The eigenfunctiong,(x; k) satisfies to the following behaviour together with its
derivatives:

Qo (x; ) = O(e Py uniformly for x € Q ash — 0 (4.12)

where2 C R" is any bounded open domain. Moreover, ktbe the union of all null-
bicharacteristic curves & + V (x) starting fromB(x,, S) N dO; then for any compact set
K Cc R"\(B; U B(x¢, S)) there existsg := ¢9(K) > 0 such that

Qo (x; ) = O(e~ St/ ash — 0 (4.13)

uniformly for x € K (see proposition 9.12 of [8]).

By restrictingx to the setQ,, consisting ofx, and of the interior of the union of all
minimal and regular geodesics from to some point ofO of length strictly less thars,
we have that

0e(x; ) =R 4ag(x; R)e PEx)/h x €y (4.14)
wherea, (x; k) is a classical symbol admitting real asymptotic expansioh gees to zero
ae(x; h) ~ a?(x) + Fa}(x) + . a?(x) > 0. (4.15)

Now, by using these results and by means of perturbative techniques, we compute the
first-level resonance of the single well operator formally defined by

Py =P +vW. (4.16)
Let
J(8) :=[0, (ex + A)R] x [—i8, 0] 8> 0andA :=min,/; 4.17)
J
be a box containing the first level resonangg&) of P, and let
P, =P, + Vi + Va. (4.18)

From the Helffer—Sjstrand results [8] and the regular perturbation theory it follows that for
0 <t < t* fixed and small enough the operator

P, Hy — HY (4.19)

has discrete spectrum in a neighbourhood of 0 and so theJlgdxis disjoint from the
essential spectrum af) , for positives small enough.
We can state the following theorem:

Theorem 3 For any 0< ¢ < t*, there existshop > 0 andé > 0 such that for any
h € (0, ho] and for any|v| < e “"/" each operatoP; ,, ¢ = 1, 2, has exactly one eigenvalue
z)(h) ==z} (h, n) in the boxJ(§) and it is given by:

2 (h) =Z(h) +v(Wey, ¢¢) + R(v, h) (4.20)
where
R, E) = —2(P! — 2(B) " Wy, W) + vO(e /) ash — 0 (4.21)

andé = Is — Cat.
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Proof. By constructionPy has both wells filled and so we have thi# — z) is invertible
and the inverse operator is uniformly norm bounded for ang J(8) for § > 0 small
enough (see, for instance, proposition 9.3 and lemma 9.4 in [8]). Then,sorall enough,
(P! — z) is invertible for anyz close toz(h) with uniformly bounded inverse operator.
Indeed, for somé > 0

(Pl -t = (- 1+ vW(F -2 (4.22)
is uniformly norm bounded with respect koandz € J(8) for any v such thafv| < g Cr/h
since (4.2), (4.3) and sinag?} — z)~* is norm bounded. Moreover:

Lemma 4 The kernel of the resolvent c(fﬁz — z) is exponentially decreasing off the
diagonal:

K(ﬁ_z)_l(x, y) = @(e‘p(x’y)”_’) x,y e R" ash - 0 (4.23)
foranyz € J.

Proof. If W is a C§° function with support insideO then the result follows from
proposition 9.3 and lemma 9.4 of [8]. In any case we have #ais a L*> function
compactly supported and then we can write

(Pl -2t =P -2t o [wEg -7 (4.24)
k=0

which converges since (4.3). Now, lgt,, }jvz"l, No € N, be a partition of unit adapted to
the support ofW:

No
W=Wo =) (4.25)
j=1

and with
suppyr,, C {x e R" : |x — y;| < €} (4.26)

wheree > 0 is arbitrary. Letrg, yo € R" and let x,, and x,, be cut-off functions with
supports close enough 1 and yg; we have that

oo
-~ _ -~ _ -~ _11k
o (PE = 2) Ko ll 2 1) = X0 (PG — 207 D (=) [W(PG = 2)7] il
k=0

~ _ 1) ~ _ k
= X (Py = 27D (=0 [@WO(PL — 2) 7] x4l
k=0

00 No —_ ~
<Y IWIEE D o (Ps = 27, 1+ Iy, (P5 = 2)
k=0 1

JJ'=
No — k-1
-1
X< Z ||¢Y/(P(§ —2) 1/’.\y||)
Jj'=1

and then, using that the result is true f(d?é — z)~! and the norm estimate (4.2) of the
perturbation, we get that there exigts= ¢'(¢) > 0, wheree’(¢) — 0 ase — 0, and a
positive constanC. independent ofi such that

[0¢]
P -1 '~ i N
1o (PE = 2) ™ Xy ll 2 1) < Ce€ 700N ([ NoCe [| W |16 ).
k=0

The result follows for and/ small enough sincey| < eCr'/F where€C = 2C,+1> 0.0
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Let now

Pi(z) : Hy®C — Hyd C (4.27)
be the Grushin type operator acting as

Pe(z) = (fﬂt o ‘”O@) . (4.28)
It is invertible forz close toz with inverse

P l(z) Hy®C — Hy® C (4.29)
given by

Pz = (Eéif) EZ_EfZZ)> (4.30)
where
E@=F -0 E=e  E=Ce) Ef@=1-% (4.31)

and Whereﬁz = (1-I1,) P;(1— I1,) andIl, is the spectral projection aP; on the vector
@ 1.e. Tlep = (¢, pr)ge. Now, let

Poi(z) HEdC — Hy® C (4.32)
be the Grushin type operator acting as
P,z w)
Poe(z) = vt 4.33
@) ( he -z (4.33)
and let
Eni(@)  Ho®C — HHd C (4.34)
be the operator acting as
_(E) Ef
Eve(2) = ( E- EH (Z)> (4.35)
where
Ei(2) = E@¥ + (Pl =)L —¥) (4.36)

andy € C°(R", [0, 1]) is such thaty = 1 on B({x1, x2}, 35 — n) and ¢ = 0 for any
x ¢ B({x1, x2}, %s), wheren has been previously defined.
Now, we have that

K11(z) Ki12(2)

Pre@E@) =14+ Koe)  Kuel2) = ( o /czz<z>> (4.37)

where
K12(z) = K12 =vWe, K22(z) '=K22=0 (4.38)
and where for any test functian e H we have
K11@u ==Ky = vW (P! — ) u — Ve (Pl — 2)720 + 0, (0. 00)
and
Kaa(@u = Kaau = (P =2 Y, 00) + (P = 27", 90)
= (Pl =2)7"0, 90)
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with¢ =1if£=2,¢=2if¢=1,andd := (1—¢)u. From (4 12),o(W, supp1p)

p(suppVe, supgl — v)) > 2s — 2n and since the kernels Qﬂm -zt and(P’ z) 1
are exponentially decreasing outside the diagonal (see lemma 4 and proposition 9.3 and
lemma 9.4 of [8]), then we obtain that

IK1al = 0@ ™) Kol = 0> |IK2a1] = O™ (4.39)
ash goes to zero. In particular, we have
I, @Il = 0@ ash—0. (4.40)

Let us point out that this asymptotic behaviour is uniform for arip a neighbourhood of
Z and it holds also for the derivative &, ((z) with respect toz. From (4.37) and (4.40)
it follows that P, ((z) admits a right inverse given by:

- Ev () E
CECE (et BEVE) Y EENE)) (4.41)

and in the same way the existence of the left inverse follows. By construction we also have
thatz e U(Pll) if and only if E (z) = 0. Therefore, it remains to computé;j(z). In
order to do this we have that asgoes to zero:

E, (z) =E; " (2) — E; K12+ E; K11K12 + E; T (2)K21K12
—E; (K2 1K12 + K12K21K12) + E; T (2)K21K11K 12
+E; (K3 1K12 + K12K21K11K12 + K1.1K12K2.1K1.2)
+E; () (Ko1K 1K1.2 + K2,1K12K2.1K1.2) + O(IK 2] - 1K, e (I
=E;"(2) — E; K12+ E; K11K12 + E; T(2)K21K12
—E; K2, K12+ E; M (2)K21K11K12 + O(ve e /My
=2 — 2= (Ve (Pl — ) Wer, ¢0) + vz = D((P{ — ) Wer, ¢0)
+O (e %M,

Indeed:
E;K12= K12, 00) =v(Woy, @)
E;K11K12 = (K1,1K12, @)
= —v[(Ve (P! — 2) " "Wer, o) — (Wor, 9)]
E;TK21K12 = v(z — D((P! = 2) " Wer, ¢0)
E; K$ K12 = (K2 K12, ¢0) = v(KI Woq, ¢r)
= —v[(K11Ve (P! — 2) 7 Wer, @) — (Kr1ge, 00)(Wer, 90)]
= — V(P — 2) Ve (Pl — 2) "Wy, Wep) + Oe%/M)]
= v[O@E*/) + OE /M) =vOEe /M)
and

E~*K21K11K12 = v(z — (P! — 2) XL — ¥)K11Wor, ¢0)
=v(z = D((P! — 272 A = ¥)pe, 00) Wer, 9p)
= v@(e_sg/ﬁ)
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sincey W = 0, Wo, = O %/%), Vy (Pl —2)1W = O(e%/F) and(1— ), = O(e*/2),
Moreover, the second resolvent formula gives

(2 = DUPL = )7 Wer, 90) = (Wep, —pr + (PL = ) 0W + Ve)gr)
and so we obtain as goes to zero:

E;f () =2—Z—v[(Wer, 00 —v((P] — 2) " Wor, Wey) — O(e%/M)].
Therefore, the solution oE;[(z) = 0 is given by the fixed point theorem:

2} =2+ v[(Wer, 90) — v((PL = 27 Wep, Wep) + O(e>/)]
so proving the theorem. O

Remark 5 If W c O then we have thaf, = 0 and so¢ =
becomes

3s. Thus the remainder

R, k) = —v2((P! — Z(R)) *Wey, Wey) +1v0(e>/%). (4.42)
In contrast, iftWW N U # @, thenC, # 0 in general and so the remainder becomes

R(v, B) = =2 (P} = (1) "W, Wer) +vO(e /) (4.43)
since (4.3) where = ..

Remark 6 Let gy} = ¢/ (x;h), £ = 1,2, be the eigenvector oP’z associated ta; (h).

Then, it can be normalized in the sense thdt ¢,) = 1. Moreover, when the perturbation

W is given by aC§® function, it satisfies to the asymptotic behaviours (4.12), (4.13) and
(4.14) already given fop, because of the results of Helffer anddSjand [8] applied teP,

and where the Agmon distance does not changepi:es py again, since the perturbative
parameterv is exponentially small inz. As for the external perturbation case, where

the perturbationW is given by a non-smooth function, we have again similar asymptotic
behaviours because the support of the perturbation is a compact set contained in the ocean
U. More precisely, by using a perturbative argument, we have that for any compdct set
contained inO\ B(x,, S) there exists := €o(K) > 0 such that

@y (x; By = O(e”+o/h) ash — 0 (4.44)

uniformly for anyx € K and for anyjv| < e C""/%. Indeed, we have that’ is given, up
to a normalization constant, by

jp—— P!, — d
©p anyg(v@ 2) e dz

—w+Z( v f(Pz WP -2 P dz

and so (4.44) follows by using that the result is true fox 0 and proving, as in the proof
of lemma 4, that the remainder terms can be estimated @y $*+</") uniformly on K
for someep > 0 ash goes to zero. In the same way (4.12) and (4.14) follow too.
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5. Double volcano resonances.

In this section we consider the interaction between the two wells. As in section 4 we have
that for any O< ¢t < * small enough the operator

P! H), — Hg (5.1)
has discrete spectrum in a neighbourhood of 0 and so the/kiex J(8) is disjoint from
the essential spectrum & for some positivel small enough. Let

1 _
n = —o ng(Pj —2)7tdz I Hy — M (5.2)

be the spectral eigenprojection 8f on J.

We have that Rafl! = 2 and then the double well operat@t has exactly two
eigenvaluesEy () and E3(h) in the boxJ for & small enough. That is (see theorem 9
in [5]):

Theorem 7 For any O< ¢ < ¢* small enough, there existg > 0 ands > 0 such that for
any i € (0, ko] and for any|v| < e ¢""/" the operatorP! admits exactly two eigenvalues
E}:=E}(h), £ =1,2, in the boxJ(§).

Now, we are going to perform the asymptotic evaluation of these two eigenvalues and
of the associated eigenvectebs (x; /). Besides, we give a criterion of localization where:

Definition Let1y,, ) be the characteristic function on a fixed neighbourh®gd,, r) of
the well{x,} wherer > 0 is fixed and small enough. The resonant state associatef{y
is delocalized (on both wells) if there exist two positive constants: p(r) andC := C(r)
independent of: 'such that:

1 .y :
145 x;,ry Py 74, — 7 < cert j=12 (5.3)
for k small enough. The resonant state associatefl;1@) is localized (on the wel{x,})
if there exist two positive constangs:= p(r) andC := C(r) independent of: such that:
s, @l — 871 < Ce? j=1,2 (5.4)
for & small enough.
That is, we have localization when each resonant state is asymptotcaltentratein
a small neighbourhood of one well. In contrast, we have delocalization when each resonant

state is asymptoticallgoncentratein a small neighbourhood of both wells.
Let

vy 1= I, ey (5.5)
be two vectors of Rafl’, where x, are Cg°(R", [0, 1]) functions such that
x2=3Sx (5.6)

and wherey; is defined in the following ways:

S sub-critical case x; = 0 on B(x,, n) and x1 = 1 outsideB(x», 21);

H hypercritical case x1 = 0 on B(x2, S — 2n) and x; = 1 outsideB(x2, S — n);
wheren > 0 has been previously defined. ThygV, = 0. The different choices for the
two cases will be justified in lemmas 8 and 11 below.

Let us stress that in the hypercritical cadehere exists a fixedy > 0 such that

@Y (x: B) = O(g~ S+l ash — 0 (5.7)
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uniformly on the closure of3(x», S) since (3.13) and remark 6. The same behaviour holds
for ¢y uniformly on the closure oB(xy, S).
Now, we have that the two vectots form a basis of Rall; in fact:

Lemma 8 Let

¢y = (v, v)) £=12 (5.8)
and

d" = (v{,vy) = (vy, V7). (5.9
In the sub-critical cas& we have that:

¢} =1+ O(e oM d’ = O(e /M) ash — 0. (5.10)
In the hypercritical casél there existsg > 0 such that

¢ =1+ O(eSot2o/hy d’ = O (g~ Sot20)/2) ash — 0. (5.11)

Proof. We can write:

vp = I, Xewy = xe9y + Ry (5.12)
where R} is the vector belonging t@{; defined as
—5?
Rl=-—— & (z) —2) X P —27A, xle) dz. (5.13)
27Tl aJ
In the sub-critical cas& we have
LA, xeJ@} I3, = Oe/) IR} I3, = O(e~%/™) (5.14)

ash goes to zero since (4.12) and the definitionyef In the hypercritical caskl we have
the different behaviour als goes to zero:

||[A, XK]‘/);”H{, — O(e*(So+2eo)/2f7) ”REHH(’) — O(ef(S(ﬁZeo)/ZlT) (5_15)

for someey > 0 since (5.7), the definition of, and 25 = S,. From now on the proof
simply follows the one of lemma 11 in [5]. O

Remark 9 From the asymptotic behaviours (5.10) and (5.11) it follows that the two vectors
v, are linearly independent and so they form a basis of IRanSuch a basis can be put in
orthonormal form{u}, u3} (in the sense thatu;, u}) = 8;’) where:

(”1> =A”<”§). (5.16)
) v

Since lemma 8, the matrid” is such that:

g = (LHOEm e om _
— Oty 14 O(e 2/t

in the sub-critical cas& and

o 1+ O(e’(sﬁzq’i/ﬁ) O(ef(SoJrZeo)/Zﬁ)_ _
- O(e—(So+2€o)/2h) 1+ (’)(e—(So+260)/h)

in the hypercritical casél. By construction, we have that:

u= (u,u))uy + (u, ud)uy Vu € RanIT’. (5.17)
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Now, we are ready to explicitly compute the two resonanEg€:) and Ej (h) as the
eigenvalues of the restriction of the operaijron Ranll!. That is, they are the eigenvalues
of the matrix

M, = (% ﬁ) 5.18
(5 2 (5.18)
where
o) = (Pluy,uy) (5.19)
and
BY = (Pluj, uy) = (Pluy, u}). (5.20)
Hence:
_ o] —al
Bl =i +ap) - CUFVIH (2 pr= T (B2
The orthonormal eigenvectors of the matfiX, are given by
1 1 > '
wy = ——oo— | g =-r"+(ED)V1+(pY)? (5.22)
/I @@)? <q£ ‘

and then the eigenvectots) (x; k) of P! associated t&} (k) are given by
s ALt Ay, Al ai Ay,

= V1t V2
V1+(@q})? V1+(@)?
Remark 10 Let us stress that we have delocalization in the sense of the above definition
when p¥ exponentially goes to zero ds — 0, while we have localization whep"
exponentially goes to infinity a8 — 0. In fact, v; is localized, up to an exponentially
small correction as goes to zero, on a neighbourhood of the well} since (5.12), (5.14),

(5.15) and remark 6. Moreover, when:= p" goes to zero we have that
1

v 1 1 _( )

2
While, when|p| goes to infinity we have that

v __ 1 1 . 1 1
1T 11002 <_;p1+@(p3)> = (o) 1+00(p™) (5.25)

(5.23)

and

vo__ 1 1 _ 0 .
2= o <2p + O(pl)) = (1) 14+ 0. (5.26)

Now, we compute the asymptotic behaviour of the element&1of

Lemma 11 Letw, andp” as above. In the sub-critical caSeve have

al = z) + O(e 2%/ B’ = p’Rye oM 4 O 2o/ (5.27)
ash goes to zero, wherg” (%) is real and such that

CTRY2 < |n ()| < CRP"1? (5.28)
for some positive constar. In the hypercritical casél there existsy > 0 such that

al =z} + O(e”SotZo/h) B = O (e Soteo/2/h (5.29)

ash goes to zero.
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Proof. The proof of this lemma essentially follows the one of lemma 13 in [5]; so we
briefly show the principal steps dropping out the details. In order to prove the asymptotic
behaviour ofw; let us fix ¢, say¢ = 1, and we compute

Pyuy = zjuy + (23 — 2))Aj o3 + 11 (5.30)

where
2
ry =) AL A-RP[AL xle) + (PL— 2R, (5.31)
j=1

Therefore

ol = (Plul, ul) = zb + O(e 2%/ ash — 0 (5.32)
in the sub-critical cas& since

!, vy) = O(e~%/) and  (u},r}) = O(e 2/ (5.33)

ash goes to zero from lemma 8 and remark 9. In full analogy, we obtain the asymptotic
behaviour ofx; in the hypercritical caskl. As for the proof of the asymptotic behaviour of

B" in the sub-critical cas8 we have that a& goes to zero (see again the proof of lemma 13
in [5]):

B = Ezf . (@) Vy — @y V] - ndl + O(e2%0/h) (5.34)
9B(x2,2n)

wheren is the unit interior normal 01 B(x2, 2n). Since the minimal geodesics connecting
the wells are internal i in the sub-critical cas, then this integral can be asymptotically
evaluated using (4.14) and obtaining thus (5.27). In the hypercritical ldase have that
(5.34) is replaced by

B = Ezf [0} Vs — 93 Vil - ndl + O(e™Soteor2/m), (5.35)
9B(x2,5—n)

and so, since (4.14) and (5.7), the above behavio dbllows. O

Now, we are ready to give a criterion of localization for the resonant state associated
to E}(h), £ =1, 2, whereh andv satisfy the conditions in theorem 7.

5.1. Symmetrical double volcano

We consider the semiclassical Sgtdinger operator (3.1) with a symmetrical double volcano
potential. In such a case the above construction gives

U2 = Sv1 (536)
and
=l = (5.37)

becauseS is a symmetrical operator such th&¢ = 1 and commutes with complex
conjugation. Hencey; andu; are given by

Uy =kvy+ vz and Uy = fv1 +Kv2 (5.38)
wherex and¢ have the following behaviour in the sub-critical c&8e

c+ m
2(c2 —d?)

=1+ O(e 2%/ ash — 0 (5.39)
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and
g:—;——i——fzéwﬁﬁ) ash — 0. (5.40)
c+E—d?
One can easily check that they are orthonormal and that
Uz = Su1 (5.41)

since (5.36). Hencey := o1 = a2 and so the two resonances Bfin J are given by
E12(h) = a £ B. (5.42)
Thus, the splitting between the resonances is given by
Eo(N) — E1(h) = 28 = 2u(R)e /" 4 O (e 2%/ ash — 0 (5.43)

and it is essentially real since lemma 11.
The associated eigenvectors bt are given by

1 1
m:(@) w:(?) (5.44)
V2 V2
and so we have delocalization like for the stable double well model (see [section 4.3.5, 7]).
Indeed, one can check that the eigenvector®ofissociated td, () are given by

_ 1 1
y(x;h) = 72(:« + (=D + 72(@ + (=D)v2
= jé[ml + (=1 x202] + O(e~5/) ash — 0.

The same delocalization result holds for the hypercritical ¢hdeo.

5.2. Symmetrical double volcano with internal perturbation

We consider now the semiclassical Siofinger operatoP, where the bounded perturbation

W which causes the breakdown of the symmetriniernal (see figure 2). That is, lat be

the Agmon distance between the wil}} and the support oW; s, > 0 because the support

of W does not intersect the wells. We assume that the perturbation is actually asymmetric
in the sense that

S1 < S (5.45)
and it isinternal in the sense that
s1 < S. (5.46)
Let A, := B(xy, s1 +r) N W, wherer > 0 is such that
int(A,) # @. (5.47)
We can state the following:

Theorem 12 Let W be a bounded internal perturbation, ket (0, iig] with g > 0 small
enough and lepy| < e /" If 5, > %So then the resonant state 8f associated t&; (h),

£ =12, is delocalized. If; < %SO, if v is such that-%In |v| < a, wherea < So — 2s1 IS
independent of, and if there exists > 0 such thatA, C 1, then the resonant state of
P, associated t&; (h) is localized.
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Figure 2. Graph of a one-dimensional double volcano potential with internal perturbation
(broken curve denotes the symmetric unperturbed double volcano).

Proof. In order to prove the delocalization result whan> %So (which is possible only
in the sub-critical cas&) we stress that (4.12), remark 5 (where= s1), remark 10 and
lemma 11 imply, a% goes to zero, that

Wee, ) =02/ (=12 (5.48)
and

V(P] = D) Wep, Wop)| = v]O(e 20—/ = 02+ /h) - (5.49)
for somex > 0 since|v| < e ¢"/F, Thus

A (= (2s1—S0) /i A(a—So/k
RN Gt IGO0 B S (5.50)
2p¥ (h)
which goes to zero as — 0 sinces; > %So, so proving the delocalization result.
In order to prove the localization result in the case< %So let us stress that (4.14)
holds for anyx € A, sinceA, C 1, and so, using also (5.47), we have that for any 0
there existC, > 0 such that

|(Wor, g1)] = / W (x)gf(x) dx + O(e™20++7/M) (5.51)
A
1 —@urosm
> g @it/ (5.52)
Ce
for smallh. Moreover, choosing > 0 such thats, > s; + € then
(W2, 92) = O(e 21to/ly ash — 0. (5.53)

Thus, in the sub-critical cas®, from theorem 3, remark 5, lemma 11 and (5.49) follows
that there existg > O such that

) e—(ZVl"rE)/F -
| | | - 2 |v|C€h—n/2—le(S0—2s1—e)/ﬁ

v 2 . == . o T
P12 s mie s
> |v|CRZ e (5.54)
for i small enough and for some positive constapt Therefore,p” exponentially goes to
infinity as’ goes to zero since + % 1In|v| > 0 and so we have localization 4s— 0.
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Finally, in the hypercritical caskl, (5.54) is replaced by

e—(2v1+e)/71—) e—(Z&‘ﬁ-e)/F) _
lp7l = IUIW = |U|2CGO(e*(SO+€0/2)/E) ash — 0 (5.55)
and then the localization result still follows in the same way sifice- 25 > 2s;. O

Remark 13 Let us stress that when we have localization, §€.< %So, the splitting
between the two resonances is still essentially real as ferO and moreover it increases
when the asymmetric perturbation is switched on:

|E5(R) — EY(h)| = ‘\/ (af — )2+ (28")2] > Ce@vtah (5.56)

ash goes to zero.

Remark 14 Let us stress that the results given in theorem 12 are still true for a perturbation
W such that the distances between the wells and the suppd¥t odincide:

§1=52 (5.57)
and where the breakdown of the symmetry is performed by assuming
SW=-WS. (5.58)

In such a case, the proof of the theorem 12 is essentially the same where now the behaviour
(5.52) holds for(Wg3, ¢2) too and so in (5.54) we hawé, instead of Z..

5.3. Symmetrical double volcano with external perturbation

We consider now the semiclassical Sifinger operatoP, where the bounded perturbation
which causes the breakdown of the symmetrgxternal (see figure 3). That is

wno=g. (5.59)

In order to discuss a delocalization criterion let us recall that the eigenfungtionsh)
have the behaviour:

@(x; B) = O(e /) Vx e U ash — 0 (5.60)

Figure 3. Graph of a one-dimensional double volcano potential with external perturbation
(broken curve denotes the symmetric unperturbed double volcano).
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and thus
2R = z(h) +vO(Ee /M) ash — 0 (5.61)
by theorem 3. Therefore, we can state the following delocalization result:

Theorem 15 Let W be a bounded external perturbation. Then, in the sub-critical 8ase
the resonant state df, associated t&) (h), £ = 1, 2, is delocalized for any.

Proof. From lemma 11 and (5.61) it immediately follows that
p’ = vO(e @0/ ash — 0 (5.62)
which exponentially goes to zero sincd 2 Sy in the sub-critical casé. O

Now, in order to give a criterion of localization we impose some restriction on the
class of external perturbatiori® admitted. More precisely, we assume the perturbation
given by W = w1, where w(x) is a positive real-valued*(R") function, 11, is the
characteristic function oV and» is a compact subset @®” with smooth boundary and
satisfying (5.59). Moreover, for the sake of simplicity, let us assume that there exists a
unique geodesig, connecting each wellx,} with 90 and let%, € 30 be the endpoint of
this geodesic. Thef, is a point of type 1 in the sense of [8]: thatis € B(x,, S) N d0.

Let y, be the bicharacteristic curve starting framand contained i/. We now introduce
a system of local coordinatas= (¢, ¢,) whereg, € R is the coordinate ofy, and where
g9 =(q1,...,q.,-1) € R"1is the system of coordinates of the hyperplane orthogonél to
atg,. Then the eigenfunctiog, has the following form forr belonging to a neighbourhood
V, of {7,(s) : 0 < s < s*} for s* small enough (see section 10 in [8]):

oe(x; ) = €55 (x; h) Ge(x; B) = ag(x; Ry "4 fe/h (5.63)

where f, = f}+if? with £} and f2 real and analytic and, is the realization of an elliptic
symbol. Moreover we have that:

0< fHx) < Culg')? fix)>0ifqg #0 (5.64)

and

FE(x) = co(0)[gn + de(gH]? ce(x) > Cy ldy(q")| < Celg'1? (5.65)

for some positive constardf,. From these behaviours and by assuming that the support of
W is contained inV; and disjoint from), we have that

(W2, 92) = O(e" 25+l ash — 0 (5.66)
for somee¢g > 0 since (4.13), and

(W, g1) = R "2e 250 / w(x)ad(x; e 2O dx. (5.67)
w

In order to estimate this integral we make the further assumption that (see figure 4)
oWwny ={ay,...,ay} transversely (5.68)

and we stress that f; # 0 on W since (5.65). Thus, by integrating (5.67) by pantsimes
we obtain fors small enough

(W1, 1) = ezs/hﬁ"/z[ / Gne 2 dr + 0(}71*1)] (5.69)
d

w
where

m—1
G =Y (—h)"g, (5.70)
s=0
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andg, = u, - n, n is the unit exterior normal tOW, ug = —%%wa% andu, is defined
asu; = —% ‘VV}?‘ZV - ug_1. Finally, sincefll|aw take its minimum value in correspondence
of the points{ay, ..., ay} we obtain the asymptotic behaviour of (5.67)hagoes to zero.

More precisely, by assuming for the sake of simplicity that the unit external nonmal
dW in «; is tangent to the bicharacteristic curye and that fl'|;» has non-degenerate
minima in the pointsy;, it follows that [section XI.5, 14]:

/ Ge 2/ dr = pntb/2 ﬁ: e/ Mp; (14 Oh)) (5.71)
aw =
wherec; are real and positive constants given by

¢j = 2fF(@)) = 2lgn(@)]*?e(e)) (5.72)
andb; are complex constants different from zero given by

b; = (27)" V2| detA;| "V ?go () E™ (5.73)

where 4; is the Hessian matrix of! in ; ando; is the signature ofi;.

Figure 4. In the external perturbation case the bicharacteristic cgiiveansversally crosses
the suppor®V of the perturbation.

Finally, choosingn > (n — 1)/2, we obtain:

(Wor, g1) = e /g, () (5.74)
where
N . —
g (h) = hY? Ze*'f-f/hbj(l + OM)) ash — 0. (5.75)
j=1

Thus we have proved the following:

Lemma 16 Let W = wi be a bounded external and asymmetric perturbation as defined
above, lety, be the bicharacteristic curve and Bt be a small enough neighbourhood
of {74(s) : 0 < s < s*} for s* small enough. IfW c V;,, Wn), = ¢ and

W Ny ={ay,...,ay} transversely then there exists> 0 such that

() = Z(R) + O(e~@5+M/h) ash — 0 (5.76)
and
() = 2(h) + ve g () + vO(e /%) ash — 0. (5.77)
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Proof. The proof follows from the above computations, from theorem 3 and from the
bound

(P =2 Wer, Wen)| = &2 (B) —2)"* W1, W) (5.78)
= O(e »/he/h), (5.79)
Then, sincdv| < e "/F the above behaviour holds. O

Remark 17 From lemma 16 and since the coefficiehtsare different from zero it follows
that ¢, (%) admits a strongly oscillating behaviour Agjoes to zero. Let: > 0 and O< ¢
be fixed and letM := M (m, c¢) be the set of G< & < hp such that

"2 L Jqa )| (5.80)

From (5.75) we have that® M since the coefficients; are different from zero. Moreover,
for a large class of models we have tidt= (0, o] for some#y > 0 and somen > 0 and
c>0.

Finally, we can state the following theorem:

Theorem 18 Let W := wly be a bounded external and asymmetric perturbation such
that )V is a compact subset @&” with smooth boundaryw(x) is a positiveC*> function,
WNV, =0, W cCVyanddW Ny = {as, ay, ..., ay} transversely. Lek € (0, hg] with

ho small enough. Then, in the hypercritical cadethere existsg > 0 such that for any

m > 0 andc > 0 and for anyh € M (m, ¢) and any|v| < e ¢/ such that-%In |v| < Jeo

the resonant state df, associated t&; (h), ¢ = 1, 2, is localized.

Proof. Since lemma 11 and lemma 16 we have that there exists 0 andi > 0 such
that
v _ e E + O(e#HIIm) -

pl=v O (6ot ) ash — 0 (5.81)

where Sy = 25 in the hypercritical caskl. Thusp®” exponentially goes to infinity as goes
to zero inM(m, ¢) since—hIn|v| < 3eo and|qy(R)| > ch™ /2. O

Remark 19 Let us stress that we can always imp@&e < %60 by means of a possible
reduction oft* becausecy does not depend on. Moreover, we have that the same
localization result is still true even in the following case:

SW=-WS (5.82)
and with 9}V that transversely intersects the bicharacteristic curves/gnd V; U V.
Remark 20 Let us stress that when we have the localization condition the splitting between
the resonances is no more essentially real as in the internal perturbation case and it is given
by

E;(h) — E{(h) = (a3 — o))y 1+ (p")~2

= [ " + 0@ P ML+ 0(p") )

for somex > 0, from (5.21), lemmas 11 and 16. Thus, the absolute value of the splitting
has the same magnitude of the one of the unperturbed case (&nee2S) but with
the following peculiarity: there is also an imaginary part of the splitting which could be

dominant with respect to the real part and moreover, for some valae thie splitting is
purely imaginary.
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Remark 21 Actually the fact that &V,0) (d denotes the Euclidean distance Rf) is

small is not essential: the same proof works (4 O) is large under the condition that

the bicharacteristic curvg, which intersects/V does not develop caustics (insitl¢ and
betweenW and O). If it does, the result is still probably true, and could be proven by
using an FBI transformation which in some sense eliminates the caustics in the same spirit
as [10].

5.4. Stark double volcano with external perturbation

Let us consider now the case of a further perturbation given by means of a bounded Stark
effect, that is:

Pv’f = Pf +vW Pf =P+ fVS (583)
where|f| < Ch? for someC > 0 and Vs is a real-analytic Stark type potential such that
Vs(x1) # Vs(x2), for instanceVs(x1) = —Vs(x2) # 0, and Vg bounded; for instance

xl
Vs(x) = (5.84)

Since f is small together withh 'we don't care about the fact that the shape of the island
associated to the potential @, could be slightly different from the one of the island
associated to the potential ¢f. Similarly, we can identify the Agmon distance &

with the one ofP. Let us fix ourselves in the hypercritical cadeand we make the same
assumptions ori¥ as in theorem 18. One can check that the single well resonance of
P, s¢ = P, s+ V, is given by

2By = 20 (B) + fVs(x) + O(f?). (5.85)

From this and from lemma 11 the two resonané®s (7) of P, ; are given by

v.f v.f B
B = S (h);zz Dy 0 I (T O ST

for someeg > 0, where
vt ® =y
=g
2y () — z5() + 2f Vs(x1) + O(f?)
2BY
_ VR Pqu(e P+ 21 Vs () + O(f?)
- O (e~ Soteo/D/h) ’

We have the following picture: folarge f, that is In|f| > —So/h, we always have
localization for anyv. For small f, that is In|f| < —So/h, the localization criterion is
the one given in theorem 18 as for #s= 0, i.e. we have localization for any such that
—hinjy| < %eo.

Now, let

I:=1(c,m)={h>0:|3¢.(M)| > ch"?} c>0, m>0  (5.86)

From lemma 16 we have thatdI (c, m) for anyc andm and that
ho)N 1
im A[(O, ho)_ (c,m)] _

1 5.87
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for anyc¢ > 0 andm > 2, wherei denotes the usual Lebesgue measur&oror fixedc
andm let us now consideh ¢ I(c,m) fixed and small enough. Then, there exists a real
value of f := f(v, k), with In| f] < —So/k, such that

Rzl =z =0 (5.88)

f

and soz,”’ — z;’f is purely imaginary with imaginary part given by

3@ =257 = vle ) + O @M (5.89)

for somei > 0, since lemma 16. Thus,

N Cﬁin+1/27n/2e—25/ﬁ
P> v

O (e (Soteo/2)/R) (5.90)

for someC, which is much greater than 1 sineg> 0, —hIn|v| < %eo and/i « 1. Then,
for i € I(c,m) and f near to f we still have localization as in the case of absence of
the Stark effect but with the following peculiarity: the splitting between the resonances is
purely imaginary, i.e.
EYT () — By () = —iv[3q1e 2" + Oe ® A+ 0((p" )%,
We can summarize this result as follows:

Theorem 22 Let the hypotheses of theorem 18 be satisfied. Then, in the hypercritical case
H for any € I(c, m) andv small enough there exist§ ;= f(v,h) such that we have
localization for P,  and the real part of the splitting between the two resonaﬂkﬁefs(ﬁ)

and Ey’ () is zero.

In such a case we have the splitting instability when the symmetry of the double-well
potential is broken by means of the external perturbatibiand the Stark effect.

Appendix

In this appendix we introduce the Hilbert spadés of Helffer—Spstrand [8] and we state
some basic results about them. We assume thi& a real-valued potential satisfying to
the following hypotheses:

Hypothesis 1 V € C*(R") and it admits an analytic extension outside a real compact set
of R”"; more preciselyV is holomorphic in the region

R:={zeC":|Nz| >R and ISz] < 8|Mz]} (A1)
for somes > 0 andR > 0.
Hypothesis 2 There exists an integér> 0 and a positive constaidt such that

IV(2)] < C|9zl* vz e R. (A.2)

Hypothesis 3 There exists a real-valued functighe C*(R} x Rf) such that

8920 G (x, &) = O(Ix|*Ir (x, §)*1F)) Va,B e N (A.3)
wherer(x, £) := [(Rx)* + (RE)A)Y2, (u) :=[1 + |«|?]¥?, and such that
2% -V,G—-V,V -V:G > Clx|t (A.4)

for any (x, &) belonging to{(x, &) € U x R;: £2 4+ V(x) = 0}, for some positive constant
C.
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One can see that the functienG (x, —&) also satisfies hypothesis 3, and therefore the
same is true foG (x, &) — G(x, —&). Thus, without loss of generality, we can assume from
now on thatG(x, §) = —G(x, —¢§), and also that for any compaét the set

Urek SUPPG (x, -) (A.5)

is compact.
We define, forr € R:

A= {(x,6) e C* : 3x = tVeG(Rx, RE) & = =1V, G(dx, RE)}
and foru € Cg°(R")
) . _ NRx —
Tu(r, Ry = [ 0 e G e Uig, (=YY g
- (9x)

wherey € C3°(R") has value 1 near 0 and is supported in a sufficiently small neighbourhood
of 0 (say the ball with centre 0 and of diameéex 1/2) and

a'=a(x,y,§) = ()" x)™"/* (1’ <y>> ' (A0)
X
ThenH, := H}(G) is defined as the closure 6f°(R") with respect to the norm:
Nl 6y == lr(x, E) Tux, &5 Rl 2(a, 65021/ doix diie) (A7)
where H is the real-valued function defined as
H(x,£) := G(Rx, RE) — NE - V:G(Rx, NE). (A.8)

It allows from the definition that<! c X! if s > s/, and thatu € Hj if, and only if,
it € Hy'. Moreover, theL?(R") scalar product orC5°(R") x C(R") can be extended
to a continuous map frorfty x H,' to C. In particular, the quantityu, Uy g 1S Well
defined foru e Hg,.
: _ r(x,%) .
Now, denotingu(x, &) = oy we have for(x, &) € Ag:
—tH (X, §) +i(x — 1§ — u(x, §)(x — ) = =G (x,§) — 13236

~ 2
H Ot — y)(RE — 2u(x, £)3x) — u(x, &) (E)tx PR S y>
2u(x, §)

with
2

t
— (V.G)2 A.9
4H(x,$)( . (A-9)

G, (x, &) = tG(Rx, NE) + 12u(x, £)(VeG)* +

As a consequence, using the change of variables:

E=ME — 2u(x, £)Jx
x + 735 = Nx + O MNx)) (A.10)
2u(x, &) '

we see that the normh- |13 ) is uniformly equivalent to the norm:
lullzg = lr &, &) Tu®, & I)| ogorse 2o g gy (A.11)

whereT differs from T only by the cut-offx, and H, is deduced fronG, by a change of
variable (A.10). In particular, by (A.9) we have
H/(%,8) = 1G(%, &) + O@?r (%, £)(¥)). (A.12)

Now, letW € L*(R") be compactly supported, and consider the operator (still denoted
by W) of multiplication by W acting onH;. We have:

x=N
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Lemma Al Let V be a double-well potential as in section 3 satisfying to hypotheses 1-3
and let! be the above Hilbert space. Then, fox 0 small enough ané := diam suppy
small enough the operator

W HY) — HY (A.13)
is bounded with bound

IWllcae = O@) (A.14)
uniformly with respect ta: if suppW x R"N suppG = @; or

IW 2y < C17277 (A.15)

for some positive constants; andC, independent of and/ if suppW x R* NsuppG # .

Remark A2 Actually, one can prove that (A.14) is true under the more general condition:
W F,(W)NsuppG = @, whereW F,(W) denotes the analytic wave-front set&f (see e.g.
[13)]).

Proof. We work with the norm defined in (A.11). By construction we see thay u) (%, £)
vanishes forx outside some compact s&t since W has compact support. Moreover, for
% € K we have thatG (%, &) = H,(x, &) = 0 for £ outside some other compact gétsince
(A.5). Also, takings ands small enough, we see th&t can be taken inside an arbitrary
neighbourhood of supyy. Then, we write

2 ’a 2 'a 2
IWulZ, = 1TWul?, o ooimara, + 1T Wil o i (A.16)

whereK'¢ := R — K" and whereH, is O(r) on K x K’ since (A.12). Thus, we deduce
from (A.16):

IWllpg, < CLe P IT Wl 2k o i ) (A.17)
and it is not difficult to show the existence @f%), (k) > 0 such that (see [8])
L
Cc B0
for some positive constarit independent ofi. As a consequence, we deduce from (A.17):
IWullzg < BRYCLEZ ™ |WI| oo luell i) (A.19)

a()llullpzn < I Tull g2y < BE)ull L2y (A.18)

and the same argument as for (A.18) gives the existence of a compd¢tseth that
1 .
”u”LZ(K) =0 <a(l/—l)”Tu||L2([€X]Rn)) (AZO)
uniformly. Since alsaH, = O(r) on K x R", we deduce from (A.18), (A.19) and (A.20)
that
”Wu“'HB < CleCZt/h—Hfu”LZ(kauqe—zﬁr/Edgdg) (A21)

from which (A.15) follows. Now, if we assume supip x R" N suppG = ¥, we get by
takingr andé sufficiently small: K x R” NsuppG = ¥. Then (A.16) gives

IWllge < 1T Wullzzck xmen (A.22)
and thus as for (A.19):
IWullzg, < BE)Cullull 2k)- (A.23)

Applying (A.20) and noticing thak can be taken inside an arbitrary neighbourhood<of
(so that in particular one can impose x R" N suppG = ), we get (A.14) as before.[
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